Akar Pangkat 2 | Cara Menghitung Akar Kuadrat dan Contohnya

0

A. Pengertian Akar Pangkat 2 atau Akar Kuadrat (Square Root)

Akar kuadrat atau akar pangkat 2 adalah kebalikan dari operasi pangkat 2 atau invers pangkat 2 suatu bilangan. Nilai akar pangkat 2 suatu bilangan x adalah y dimana berlaku x = y², dengan x dan y bilangan real. Akar kuadrat dalam bahasa inggris disebut “square root“.

Konsep Dasar

Untuk memahami konsep akar kuadrat, kita perlu memahami konsep perpangkatan khususnya perpangkatan 2.

Baca lebih lanjut: Perpangkatan dan Cara Menghitung Pangkat 

Contoh:

√144 = 12
Karena 12² = 12 × 12 = 144

Navigasi Cepat

B. Cara Menghitung Akar Kuadrat (Ekstraksi)

Sebelum ditemukan kalkulator, menghitung akar kuadrat menjadi topik hangat di kalangan matematikawan untuk menemukan metode yang efektif dan efisien. Sehingga mencari akar pangkat 2 bukanlah hal sederhana secara keilmuan.

Metode Ekstraksi (Longhand Method)

Berdasarkan catatan J.B Calvert (1999), metode ekstraksi (longhand method) merupakan yang paling mudah untuk digunakan. Metode ini bekerja dengan memisahkan 2 digits bilangan yang dihitung. Selain itu, terdapat banyak metode lain untuk menghitung akar kuadrat seperti metode logaritma (tercepat) atau dengan metode aritmatika yang lebih akurat. Berikut dasar penggunaan metode ekstraksi,

  1. Memahami Perpangkatan 2

    Pangkat 2 Akar Pangkat 2
    1² =  1 × 1 = 1 √1 = 1
    2² = 2 × 2 = 4 √4 = 2
    3² = 3 × 3 = 9 √9 = 3
    4² = 4 × 4 = 16 √16 = 4
    5² = 5 × 5 = 25 √25 = 5
    6² = 6 × 6 = 36 √36 = 6
    7² = 7 × 7 = 49 √49 = 7
    8² = 8 × 8 = 64 √64 = 8
    9² = 9 ×9 = 81 √81 = 9
    10² = 10 ×10 = 100 √100 = 10
  2. Mengekstrak Bilangan

    Untuk mengekstrak bilangan dimulai 2 digits dari satuan.

    11
    1 11
    11 11
    1 11 11
    11 11 11
    11 11 11, 10
    11 11 11, 11
    11 11 11, 11 10
    dan seterusnya
  3. Mencari akar ekstraksi pertama dari kiri

  4. Mencari akar ekstraksi selanjutnya

    1. Proses pengurangan
    2. Menurunkan ekstraksi selanjutnya
    3. Mencari pasangan perkalian dari 2x nilai akar ekstraksi
  5. Melakukan langkah 4 hingga menemukan hasil terdekat


Contoh 1: Akar kuadrat dari 484 

Penyelesaian:

* Mengekstrak bilangan dari √484

Mengekstrak bilangan akar ratusan

Mengekstrak 2 digits bilangan dari satuan

* Mencari akar ekstraksi pertama dari kiri, yaitu 4

Akar terdekat atau tepat dari √4 adalah 2, karena 2² = 4 (Nilai diambil saat hasil paling mendekati dan tidak melebihi 4)

mencari akar ekstraksi pertama

* Mengurangkan nilai kuadrat 2² = 4, lalu menurunkan ekstraksi berikutnya

Mengurangkan nilai kuadrat

* Mencari pasangan perkalian dari “2x” nilai akar ekstraksi (2)

2x nilai akar ekstraksi

Nilai (…) adalah suatu bilangan bulat yang memenuhi 4 (…) × (…) ≅ 84 

Catatan: ≅ merupakan tanda sama dengan atau hampir mendekati

UNTUK mencari perlu dicoba setiap bilangan bulat hingga mendekati ≅ 84

41 × 1 = 41
42 × 2 = 84
43 × 3 = 129
...

Sehingga diperoleh nilai (…) = 2, KARENA 42 × 2 = 84.

Mencari perkalian ekstraksi yang memenuhi

* Karena hasil pengurangan ekstraksi telah habis, maka proses ekstraksi telah selesai.

Jadi, √484 = 22

Baca juga: Cara Menghitung Akar Pangkat 3


Contoh 2: Akar kuadrat dari 625

* Mengekstrak bilangan dari √625

2). Mengekstrak bilangan akar ratusan

Mengekstrak 2 digits bilangan dari satuan

* Mencari akar ekstraksi pertama dari kiri, yaitu 6

Yang paling mendekati √6 ≅ 2, karena 2² = 4 (Nilai diambil saat hasil paling mendekati dan tidak melebihi 6)

2). mencari akar ekstraksi pertama

* Mengurangkan nilai kuadrat 2² = 4, lalu menurunkan ekstraksi berikutnya

2). Mengurangkan nilai kuadrat

* Mencari pasangan perkalian dari “2x” nilai akar ekstraksi (2)

2). 2x nilai akar ekstraksi

Nilai (…) adalah suatu bilangan bulat yang memenuhi 4 (…) × (…) ≅ 225 

Catatan: ≅ merupakan tanda sama dengan atau hampir mendekati

UNTUK mencari perlu dicoba setiap bilangan bulat hingga mendekati ≅ 225

...
43 × 3 = 129
44 × 4 = 176
45 × 5 = 225
46 × 6 = 276
...

Sehingga diperoleh pasangan angka 5

2). Mencari perkalian ekstraksi yang memenuhi

* Karena hasil pengurangan ekstraksi telah habis, maka proses ekstraksi telah selesai.

Jadi, √625 = 25


Contoh 3: Akar kuadrat dari 15.129

* Mengekstrak bilangan dari √15.129

3). Mengekstrak bilangan akar ratusan

Mengekstrak 2 digits bilangan dari satuan

* Mencari akar ekstraksi pertama dari kiri, yaitu 1

Akar terdekat atau tepat dari √1 adalah 1, karena 1² = 1 (Nilai diambil saat hasil paling mendekati dan tidak melebihi 1)

3). mencari akar ekstraksi pertama

* Mengurangkan nilai kuadrat 1² = 1, lalu menurunkan ekstraksi berikutnya

3). Mengurangkan nilai kuadrat

* Mencari pasangan perkalian dari “2x” nilai akar ekstraksi (1)

3). 2x nilai akar ekstraksi

Nilai (…) adalah suatu bilangan bulat yang memenuhi 2 (…) × (…) ≅ 51 

Catatan: ≅ merupakan tanda sama dengan atau hampir mendekati

UNTUK mencari perlu dicoba setiap bilangan bulat hingga mendekati ≅ 51

...
21 × 1 = 21
22 × 2 = 44 
23 × 3 = 69
...

Sehingga diperoleh pasangan angka 2 , karena pasangan 1 (21) lebih kecil (21) dari pasangan 2 (44) dan pasangan 3 (69) lebih besar namun melebihi 51.

3. Mencari perkalian ekstraksi yang memenuhi

* Mengurangkan dan menurunkan ekstraksi berikutnya (ekstraksi belum habis)

3). Mengurangkan ekstraksi

* Mencari pasangan perkalian dari “2x” nilai akar ekstraksi (12)

3). 2x nilai akar ekstraksi berikutnya

Nilai (…) adalah suatu bilangan bulat yang memenuhi 24 (…) × (…) ≅ 729

Catatan: ≅ merupakan tanda sama dengan atau hampir mendekati

UNTUK mencari perlu dicoba setiap bilangan bulat yang menghasilkan ≅ 729

241 × 1 = 241
242 × 2 = 484
243 × 3 = 729
...

Sehingga diperoleh pasangan angka 3

3). Mencari perkalian ekstraksi berikutnya yang memenuhi

* Karena hasil pengurangan ekstraksi telah habis, maka proses ekstraksi telah selesai.

Jadi, √15.129 = 123


C. Cara Menghitung Akar Kuadrat Tidak Sempurna

Akar tidak sempurna adalah nilai akar yang menghasilkan bilangan desimal atau tidak bulat. Saat menggunakan metode ekstraksi, akar tidak sempurna menghasilkan nilai bukan 0 saat semua ekstraksi bulat habis (di depan koma). Jadi untuk menghitungnya diambil ekstraksi desimal berikutnya, hingga hasil yang diperoleh dapat mendekati nilai akar tidak sempurna.

Contoh: Akar kuadrat dari 35

* Mengekstrak bilangan dari √35

Bilangan ini hanya terdiri dari 2 digits, jadi hasil ekstraksi tetap √35

Ekstraksi akar tidak sempurna

* Mencari akar ekstraksi pertama dari kiri, yaitu 35

Akar terdekat dan tidak melebihi  √35 adalah 5, karena 5² = 25 (Nilai diambil saat hasil paling mendekati dan tidak melebihi 35)

mencari akar ekstraksi pertama tidak sempurna

* Mengurangkan nilai kuadrat 5² = 25

mengurangi ekstraksi akar tidak sempurna

Ekstraksi bulat habis, namun pengurangan bersisa. Ambil ekstraksi desimal 

Mengambil ekstraksi desimal

* Mencari pasangan perkalian dari “2x” nilai akar ekstraksi (5)

2x nilai akar ekstraksi desimal

Nilai (…) adalah 1 digit tambahan bilangan desimal yang memenuhi 10, (…) × (…) ≅ 10,00

Catatan: ≅ merupakan tanda sama dengan atau hampir mendekati

UNTUK mencari perlu dicoba setiap bilangan bulat hingga mendekati ≅ 10,00

10,1 × 0,1 = 1,01
10,2 × 0,2 = 2,04
...
10,9 × 0,9 = 9,81

Jadi 1 digit nilai desimal yang paling mendekati adalah 0,9

Hasil akar tidak sempurna

Sampai proses ekstraksi desimal pertama sudah diperoleh hasil √35 ≈ 5,9

Tidak puas dengan hasilnya, ulangi ke ekstraksi desimal berikutnya 

2x nilai akar ekstraksi desimal berikutnya

Nilai (…) adalah 1 digit tambahan bilangan desimal yang memenuhi 11,8 (…) × (…) ≅ 0, 19 00

Catatan: ≅ merupakan tanda sama dengan atau hampir mendekati

UNTUK mencari perlu dicoba setiap bilangan bulat hingga mendekati ≅ 0, 19 00

11,81 × 0,01 = 0,1181
10,82 × 0,02 = 0,2164
...

Jadi 1 digit nilai desimal yang paling mendekati adalah 0,01

Cara mencari akar tidak sempurna

Langkah diatas menghasilkan nilai yang lebih detail, langkah tersebut dapat dilanjutkan untuk menghasilkan nilai yang lebih detail lagi.

Jadi, √35 = 5,91 …

Tutorial lainnya: Daftar Isi Pelajaran Matematika


Sekian artikel “Akar Pangkat 2 | Cara Menghitung Akar Kuadrat dan Contohnya“. Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih…

AYO BERKOMENTAR

Tulis komentar
Masukkan nama Anda